DifFERENTIATIng Polynomials \| Key Facts

There are two types of notation you will encounter in the A-level course. You need to be familiar with the following:
> Leibniz's Notation:
o $y=3 x^{2} \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=6 x$ or $\frac{\mathrm{d}}{\mathrm{d} x}\left(3 x^{2}\right)=6 x$
$>$ Lagrange's Notation:

$$
\text { o } \mathrm{f}(x)=3 x^{2} \quad \mathrm{f}^{\prime}(x)=6 x
$$

Correct Form For Differentiation | Example Problem Pairs

1E. (a) $y=(x+2)(x-5)$. Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.

$$
\begin{aligned}
y & =(x+2)(x-5) \\
y & =x^{2}-3 x+10 \\
\frac{d y}{d x} & =2 x-3
\end{aligned}
$$

(b) $\mathrm{f}(x)=x^{2} \sqrt{x}$. Find $\mathrm{f}^{\prime}(x)$.

$$
\begin{aligned}
f(x) & =x^{2} \sqrt{x} \\
& =x^{2} \cdot x^{\frac{1}{2}} \\
& =x^{\frac{5}{2}} \\
f^{\prime}(x) & =\frac{5}{2} x^{\frac{3}{2}}
\end{aligned}
$$

2E. Find $\frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{2 x-6}{\sqrt{x}}\right)$

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{2 x-6}{\sqrt{x}}\right) & =\frac{d}{d x}\left(\frac{2 x}{x^{\frac{1}{2}}}-\frac{6}{x^{\frac{1}{2}}}\right) \\
& =\frac{d}{d x}\left(2 x^{\frac{1}{2}}-6 x^{-\frac{1}{2}}\right) \\
& =x^{-\frac{1}{2}}+3 x^{-\frac{3}{2}}
\end{aligned}
$$

The two terms in the numerator can SEPARATE FRACTIONS

Reducing Mistakes

$$
\frac{a+b}{c}=\frac{a}{c}+\frac{b}{c} \quad \text { BUT } \frac{a}{b+c} \neq \frac{a}{b}+\frac{a}{c}
$$

Differentiating Polynomials | Key Facts

$$
>\quad \frac{\mathrm{d}}{\mathrm{~d} x}(\mathrm{f}(x) \pm \mathrm{g}(x))=\frac{\mathrm{d}}{\mathrm{~d} x} \mathrm{f}(x) \pm \frac{\mathrm{d}}{\mathrm{~d} x} \mathrm{~g}(x
$$

$>\frac{\mathrm{d}}{\mathrm{d} x}(\mathrm{f}(x) \pm \mathrm{g}(x))=\frac{\mathrm{d}}{\mathrm{d} x} \mathrm{f}(x) \pm \frac{\mathrm{d}}{\mathrm{d} x} \mathrm{~g}(x)$

Terms can be differentiated SEPARATELY
o e.g. $\frac{\mathrm{d}}{\mathrm{d} x}\left(3 x^{2}+5 x\right)=\frac{\mathrm{d}}{\mathrm{d} x}\left(3 x^{2}\right)+\frac{\mathrm{d}}{\mathrm{d} x}(5 x)=6 x+5$
$>\frac{\mathrm{d}}{\mathrm{d} x}(k \mathrm{f}(x))=k \frac{\mathrm{~d}}{\mathrm{~d} x} \mathrm{f}(x)$
o e.g. $\frac{\mathrm{d}}{\mathrm{d} x}\left(3 x^{2}\right)=3 \frac{\mathrm{~d}}{\mathrm{~d} x}\left(x^{2}\right)=3 \cdot 2 x=6 x$

Increasing and Decreasing Functions

> When the graph is increasing the gradient is positive.
$>$ When the graph is decreasing the gradient is negative.
E
o $\quad \mathrm{f}^{\prime}(x)>0$
o $\quad \mathrm{f}^{\prime}(x)<0$

0

$$
1(x)<0
$$

3E. Find the gradient of the graph $y=4 x^{3}$ at the point where $x=2$.

Evaluate $\frac{\mathrm{d} y}{\mathrm{~d} x}$
WHEN $x=2$

$$
\left.\therefore \frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{x=2}=12(2)^{2}=48
$$

4 E . Find the values of x for which the graph of $y=x^{3}-7 x+1$ has a gradient of 5 .
$\frac{\mathrm{d} y}{\mathrm{~d} x}=5 \quad \frac{d y}{d x}=3 x^{2}-7$

$$
\begin{aligned}
\therefore 5 & =3 x^{2}-7 \\
12 & =3 x^{2} \\
4 & =x^{2} \\
x & = \pm 2
\end{aligned}
$$

3P. Find the gradient of the graph $y=\frac{2}{x}+\sqrt{x}$ at the point where $x=1$.
\qquad
\qquad
\qquad
\qquad

4P. Find the value of x for which the graph of $y=x^{\frac{4}{3}}$ has a gradient of $\frac{16}{15}$.
\qquad
\qquad
\qquad
\qquad \longrightarrow

Increasing and Decreasing Functions

> The sign of the gradient at a point tells you whether the function is increasing or decreasing at that point.
o $\frac{\mathrm{d} y}{\mathrm{~d} x}>0 \Rightarrow$ The function is increasing (positive gradient)
o $\frac{\mathrm{d} y}{\mathrm{~d} x}<0 \Rightarrow$ The function is decreasing (negative gradient)

5E. (a) Find the range of values of x for which the function
$\mathrm{f}(x)=2 x^{3}-6 x$ is decreasing.

$$
f^{\prime}(x)=6 x^{2}-6
$$

$f(x)$ is decreasing when $f^{\prime}(x)<0$

$$
\therefore \quad 6 x^{2}-6<0
$$

Critical values at $6 x^{2}-6=0$

$\therefore f(x)$ is decreasing when $-1<x<1$

5E. (b) Show that the function $3 x^{3}+5 x$ is increasing for all values of x.

$$
f^{\prime}(x)=9 x^{2}+5
$$

Since $x^{2} \geq 0, f^{\prime}(x)>0$ for all x.
$\therefore \quad f(x)$ is always increasing.

Increasing and Decreasing Functions

3P. Find the range of values of x for which $y=4 x^{2}+\frac{1}{x}$ is increasing.
\qquad

